Comprehensive Guide on Nonlinear FEA Using the Newton–Raphson Method

Dr. Iman Salehinia

April 14, 2025

MechCADemy Youtube Channel: https://www.youtube.com/@MechCADemy-e9y NIU Webpage: https://www.niu.edu/ceet/about/directory/salehinia-iman.shtml

Contents

1.1 Single-Variable Formulation and Example 1.2 Multi-Variable Newton-Raphson 2 Newton-Raphson in Finite Element Analysis 2.1 From Linear FEA to Nonlinear FEA 2.2 Tangent Stiffness Matrix 2.3 Nonlinear Spring Example (Detailed Iterations) 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of Fint 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 6.2 Concluding Remarks				2
2 Newton-Raphson in Finite Element Analysis 2.1 From Linear FEA to Nonlinear FEA 2.2 Tangent Stiffness Matrix 2.3 Nonlinear Spring Example (Detailed Iterations) 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of Fint 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary		 		2
2.1 From Linear FEA to Nonlinear FEA 2.2 Tangent Stiffness Matrix 2.3 Nonlinear Spring Example (Detailed Iterations) 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of F _{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary		 		2
 2.2 Tangent Stiffness Matrix 2.3 Nonlinear Spring Example (Detailed Iterations) 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic,Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 				4
 2.3 Nonlinear Spring Example (Detailed Iterations) 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 		 		4
 2.4 Convergence Criteria 3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic,Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 		 		4
3 Step-by-Step Procedure for Nonlinear FEA 3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of Fint 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary				4
3.1 Global Roadmap: Total Lagrangian + Newton-Raphson 3.2 Detailed Iteration Flow 4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of Fint 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary		 	 •	5
 3.2 Detailed Iteration Flow				5
4 Kinematic Measures in a Total Lagrangian Approach 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Ford 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of Fint 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary				5
 4.1 Deformation Gradient F 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic,Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 		 	 •	6
 4.2 Green-Lagrange Strain E 4.3 Strain-Displacement Matrix B 4.4 Illustrative 2D Bilinear Example 5 Second Piola-Kirchhoff (2PK) Stress and Internal Force 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic,Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 				6
 4.3 Strain-Displacement Matrix B. 4.4 Illustrative 2D Bilinear Example. 5 Second Piola-Kirchhoff (2PK) Stress and Internal Fords 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 				7
4.4 Illustrative 2D Bilinear Example		 		7
 5 Second Piola–Kirchhoff (2PK) Stress and Internal Ford 5.1 Why the 2PK Stress? 5.2 Constitutive Modeling (Elastic, Plastic) 5.3 Computation of F_{int} 5.4 Relation to the Cauchy Stress 6 Putting It All Together 6.1 Full Iterative Algorithm Summary 				7
5.1 Why the 2PK Stress?		 		7
5.2 Constitutive Modeling (Elastic, Plastic)	e			9
5.3 Computation of \mathbf{F}_{int}		 		9
5.4 Relation to the Cauchy Stress		 		9
6 Putting It All Together 6.1 Full Iterative Algorithm Summary				9
6.1 Full Iterative Algorithm Summary		 		9
· · · · · · · · · · · · · · · · · · ·				10
6.2 Concluding Remarks		 		10
0		 		11
7 Final Reflections: Why the Roadmap Matters				11
8 Note on Formulas vs. Derivations				11

1 Overview of the Newton–Raphson Method

The **Newton–Raphson** (NR) method is a powerful root-finding (or system-solving) algorithm that leverages local linearization (first-order Taylor expansions) to obtain fast convergence, provided the initial guess is close enough and the Jacobian is well-conditioned.

1.1 Single-Variable Formulation and Example

When you want to solve a single equation

$$f(x) = 0,$$

the Newton–Raphson iteration reads:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}.$$

Example: Solve

$$f(x) = x^2 - 2 = 0 \longrightarrow x = \pm \sqrt{2}$$
.

The derivative is f'(x) = 2x. Plugging into the formula:

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)2} - 2}{2x^{(k)}}.$$

Table 1: Iteration table for the single-variable example $x^2 - 2 = 0$, starting from $x^{(0)} = 2.0$.

Iter.	$x^{(k)}$	$f(x^{(k)})$	$f'(x^{(k)})$	$x^{(k+1)}$
0	2.0000	2.0000	4.0000	1.5000
1	1.5000	0.2500	3.0000	1.4167
2	1.4167	0.00694	2.8333	1.4142
3	1.4142	0.00006	2.8284	1.4142

This rapidly converges to $\sqrt{2} \approx 1.4142$.

1.2 Multi-Variable Newton-Raphson

When the unknown vector is $\mathbf{x} \in \mathbb{R}^n$ and you have a system

$$f(x) = 0$$

the Jacobian $\mathbf{J}(\mathbf{x})$ is the matrix of partial derivatives:

$$\mathbf{J}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}.$$

For a 2D system (x, y), this simplifies to:

$$\mathbf{J}(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix}.$$

The Newton–Raphson iteration in vector form is:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left[\mathbf{J} \left(\mathbf{x}^{(k)} \right) \right]^{-1} \mathbf{f} \left(\mathbf{x}^{(k)} \right).$$

Example System:

$$\begin{cases} x + y - 4 = 0, \\ x^2 + y^2 - 20 = 0. \end{cases}$$

Define

$$\mathbf{f}(x,y) = \begin{pmatrix} x+y-4 \\ x^2+y^2-20 \end{pmatrix}, \quad \mathbf{J}(x,y) = \begin{pmatrix} 1 & 1 \\ 2x & 2y \end{pmatrix}.$$

Sample Calculation (Iteration 0):

$$(x^{(0)}, y^{(0)}) = (3, 1).$$

Then

$$\mathbf{f}(3,1) = \begin{pmatrix} 3+1-4\\ 9+1-20 \end{pmatrix} = \begin{pmatrix} 0\\ -10 \end{pmatrix}, \quad \mathbf{J}(3,1) = \begin{pmatrix} 1 & 1\\ 6 & 2 \end{pmatrix}.$$

The determinant is (1)(2) - (1)(6) = -4, so

$$\mathbf{J}^{-1}(3,1) = \begin{pmatrix} -1/2 & 1/4 \\ 3/2 & -1/4 \end{pmatrix}.$$

Hence,

$$\begin{pmatrix} x^{(1)} \\ y^{(1)} \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} -1/2 & 1/4 \\ 3/2 & -1/4 \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix} = \begin{pmatrix} 5.5 \\ -1.5 \end{pmatrix}.$$

Table 2: Newton–Raphson iteration steps for x + y - 4 = 0, $x^2 + y^2 - 20 = 0$.

Iteration Table (Final Results): Continuing further iterations converges to one real solution, e.g. $(2 + \sqrt{6}, 2 - \sqrt{6})$. Different initial guesses might converge to the other solution $(2 - \sqrt{6}, 2 + \sqrt{6})$.

2 Newton–Raphson in Finite Element Analysis

2.1 From Linear FEA to Nonlinear FEA

In **linear** finite element analysis, we often have

$$\mathbf{F}_{\mathrm{ext}} = \mathbf{K} \, \mathbf{a},$$

where

- a is the nodal displacement vector,
- **K** is the *constant* global stiffness matrix,
- \bullet $\mathbf{F}_{\mathrm{ext}}$ is the external load vector.

One inverts **K** once to get $\mathbf{a} = \mathbf{K}^{-1}\mathbf{F}_{\mathrm{ext}}$.

However,in **nonlinear** FEA,the internal force $\mathbf{F}_{int}(\mathbf{a})$ depends on **a** nonlinearly:

$$\mathbf{F}_{int}(\mathbf{a}) \neq \mathbf{K} \mathbf{a}$$
 (no longer constant \mathbf{K}),

thus requiring iterative solution of

$$\mathbf{F}_{\mathrm{ext}} - \mathbf{F}_{\mathrm{int}}(\mathbf{a}) = \mathbf{0}.$$

2.2 Tangent Stiffness Matrix

Within each iteration, we linearize $\mathbf{F}_{int}(\mathbf{a})$ around the current guess $\mathbf{a}^{(i)}$:

$$\mathbf{F}_{\mathrm{int}}ig(\mathbf{a}^{(i+1)}ig)pprox\mathbf{F}_{\mathrm{int}}ig(\mathbf{a}^{(i)}ig)+\left.rac{\partial\mathbf{F}_{\mathrm{int}}}{\partial\mathbf{a}}
ight|_{\mathbf{a}^{(i)}}ig(\mathbf{a}^{(i+1)}-\mathbf{a}^{(i)}ig).$$

Define

$$\mathbf{K}_{\mathrm{T}}^{(i)} = \left. \frac{\partial \mathbf{F}_{\mathrm{int}}}{\partial \mathbf{a}} \right|_{\mathbf{a}^{(i)}}$$
 (the tangent stiffness).

The global **Newton–Raphson** iteration in FEA is:

$$\mathbf{K}_{\mathrm{T}}^{(i)}\,\Delta\mathbf{a}^{(i)} = \mathbf{F}_{\mathrm{ext}} - \mathbf{F}_{\mathrm{int}}\big(\mathbf{a}^{(i)}\big), \quad \mathbf{a}^{(i+1)} = \mathbf{a}^{(i)} + \Delta\mathbf{a}^{(i)}.$$

2.3 Nonlinear Spring Example (Detailed Iterations)

Consider a 1D nonlinear spring where

$$F_{\rm int}(u) = k u + \alpha u^3,$$

with constants k and α . Suppose an external force F_{ext} is applied. We want $F_{\text{int}}(u) = F_{\text{ext}}$. The tangent stiffness is

$$K_{\rm T}(u) = \frac{d}{du} (k u + \alpha u^3) = k + 3 \alpha u^2.$$

TT 11 0	T	1 1 1	c		1 T	1.	
Table 3	Iteration	table	tor	а	11)	nonlinear	spring
Table 9.	10Cl auton	uabic	101	α	\mathbf{L}	nommean	spring.

Iter.	$u^{(i)}$	$F_{\rm int}(u^{(i)})$	$R^{(i)} = F_{\rm ext} - F_{\rm int}$	$K_{\mathrm{T}}(u^{(i)})$	$\Delta u^{(i)}$	$u^{(i+1)}$
0	1.000	11.0	9.0	13.0	9/13 = 0.692	1.692
1	1.692	21.75	-1.75	18.59	-1.75/18.59 = -0.094	1.598
2	1.598	20.06	-0.06	17.66	-0.06/17.66 = -0.0034	1.5946
3	1.5946	19.999	0.001	17.63	$\approx 6 \times 10^{-5}$	1.59466

Example: Let $k = 10 \text{ N/m}, \alpha = 1 \text{ N/m}^3, \text{ and } F_{\text{ext}} = 20 \text{ N.Solve } k u + \alpha u^3 = 20.$

Converged solution: $u \approx 1.5946 \,\mathrm{m}$.

2.4 Convergence Criteria

In practice, one sets tolerances on:

• Residual Norm: $\|\mathbf{R}^{(i)}\| = \|\mathbf{F}_{\text{ext}} - \mathbf{F}_{\text{int}}\|$.

• Displacement Increment Norm: $\|\Delta \mathbf{a}^{(i)}\|$.

• Relative Changes: e.g., $\frac{\|\Delta \mathbf{a}^{(i)}\|}{\|\mathbf{a}^{(i+1)}\|} < \epsilon$.

Newton–Raphson typically converges *quadratically* when close to the solution and the tangent matrix is well-conditioned.

3 Step-by-Step Procedure for Nonlinear FEA

3.1 Global Roadmap: Total Lagrangian + Newton-Raphson

When dealing with large deformations or material nonlinearities, a *Total Lagrangian* formulation (where everything is measured in the reference configuration) is common. Typical high-level steps:

- 1. **Define** geometry, material model (e.g. elastic, elastoplastic, hyperelastic), mesh, boundary conditions, and loads.
- 2. **Possibly subdivide** the total load into increments (load step 1,2,etc.).
- 3. Initialize all unknown displacements at zero or a known approximation.
- 4. Newton-Raphson Loop for each load step:
 - Compute internal forces and tangent stiffness.
 - Solve for displacement increments.
 - Update displacements.
 - Check convergence.
- 5. **Post-process** results: final displacements, stress distribution, etc.

3.2 Detailed Iteration Flow

Adapted from a Step-by-Step Guide to Solving Nonlinear FEA Problems, each load step n typically does:

- 1. **Apply \mathbf{F}_{\text{ext}}^{(n)}** (this is *not* the full external load,but rather the *incremental* or *reduced* portion for this load step).
- 2. **Set** iteration index i = 0. Use last converged **a** from the previous load step as the initial guess.
- 3. Compute the global residual

$$\mathbf{R}^{(i)} = \mathbf{F}_{\mathrm{ext}}^{(n)} - \mathbf{F}_{\mathrm{int}}(\mathbf{a}^{(i)}).$$

- 4. Assemble global tangent stiffness $\mathbf{K}_{\mathrm{T}}^{(i)}$.
 - Requires element-level computations: the deformation gradient **F**, the stress measure **S**, etc.
- 5. Check if $\|\mathbf{R}^{(i)}\|$ < tolerance. If not converged:

$$\mathbf{K}_{\mathrm{T}}^{(i)} \Delta \mathbf{a}^{(i)} = \mathbf{R}^{(i)}, \quad \mathbf{a}^{(i+1)} = \mathbf{a}^{(i)} + \Delta \mathbf{a}^{(i)}.$$

- 6. Repeat until convergence.
- 7. **Proceed** to next load step (or finish if final load is reached).

4 Kinematic Measures in a Total Lagrangian Approach

A central piece of large-deformation FEA is computing:

- The deformation gradient \mathbf{F} ,
- The Green-Lagrange strain E,
- The strain-displacement matrix **B**.

All are evaluated with respect to the reference (initial) configuration.

Note: The following example for **F** and **E** simply illustrates a *sample* computation at one Gauss point. In actual FEA codes, you would repeat this at each Gauss point of each element. We also assume the reader has *basic knowledge of isoparametric mapping*, shape functions, and *simple stress analysis* in FEA.

4.1 Deformation Gradient F

For a 2D (or 3D) element, let:

- (X_i, Y_i) be the coordinates of node i in the reference configuration,
- (x_i, y_i) be the coordinates in the *current* (deformed) configuration:

$$x_i = X_i + u_i, \quad y_i = Y_i + v_i.$$

Within an element, the position $\mathbf{x}(r,s)$ is obtained by shape functions $N_i(r,s)$ (where $(r,s) \in [-1,1] \times [-1,1]$):

$$x(r,s) = \sum_{i=1}^{4} N_i(r,s) x_i, \quad y(r,s) = \sum_{i=1}^{4} N_i(r,s) y_i.$$

Similarly for X(r,s) and Y(r,s) in the reference configuration.

4.2 Green-Lagrange Strain E

Once **F** is known, the Green–Lagrange strain is

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^\mathsf{T} \, \mathbf{F} - \mathbf{I}).$$

Unlike small-strain $\epsilon = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$, **E** captures *large* rotations and stretches.

4.3 Strain-Displacement Matrix B

In a total Lagrangian element formulation, we express variations in \mathbf{E} (or other strain measures) in terms of variations in nodal displacements $\delta \mathbf{u}$. The matrix \mathbf{B} collects all partial derivatives so that:

$$\delta \mathbf{E} = \mathbf{B} \, \delta \mathbf{u}$$
.

For a 2D bilinear quad (4 nodes, each with 2 DOFs), **B** is 3×8 . The exact form depends on partial derivatives of the shape functions w.r.t. the *reference* coordinates (X, Y).

4.4 Illustrative 2D Bilinear Example

Let's consider a single 4-node element:

• Reference coordinates:

$$(X_1, Y_1) = (0, 0), \quad (X_2, Y_2) = (2, 0), \quad (X_3, Y_3) = (2, 1), \quad (X_4, Y_4) = (0, 1).$$

• Current (deformed) coordinates: at iteration,

$$(x_i, y_i) = (X_i + u_i, Y_i + v_i).$$

For example,

$$(u_1, v_1) = (0.10, 0.00) \rightarrow (x_1, y_1) = (0.10, 0.00), \quad (u_2, v_2) = (0.15, 0.00) \rightarrow (x_2, y_2) = (2.15, 0.00),$$
 etc.

• Shape functions for a 4-node bilinear quad in (r, s):

$$N_1(r,s) = \frac{1}{4}(1-r)(1-s), \quad N_2(r,s) = \frac{1}{4}(1+r)(1-s), \quad N_3(r,s) = \frac{1}{4}(1+r)(1+s), \quad N_4(r,s) = \frac{1}{4}(1-r)(1-s), \quad N_4(r,s) = \frac{1}{4}(1-r)(1-s)$$

Sample Computation of $\frac{\partial(x,y)}{\partial(r,s)}$ **and** $\frac{\partial(X,Y)}{\partial(r,s)}$: - First,note that

$$x(r,s) = \sum_{i=1}^{4} N_i(r,s) x_i, \quad y(r,s) = \sum_{i=1}^{4} N_i(r,s) y_i.$$

Therefore,

$$\frac{\partial x}{\partial r} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial r} x_i, \quad \frac{\partial x}{\partial s} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial s} x_i,$$

and similarly for y(r, s).

- For $\mathbf{X}(r,s)$ and $\mathbf{Y}(r,s)$ in the reference domain:

$$X(r,s) = \sum_{i=1}^{4} N_i(r,s) X_i, \quad Y(r,s) = \sum_{i=1}^{4} N_i(r,s) Y_i.$$

Then

$$\frac{\partial X}{\partial r} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial r} X_i, \quad \frac{\partial X}{\partial s} = \sum_{i=1}^{4} \frac{\partial N_i}{\partial s} X_i,$$

(and similarly for Y).

- Example partial derivatives: Suppose (r, s) = (0.57735, 0.57735), then

$$\frac{\partial N_1}{\partial r} = -\frac{1}{4}(1-s), \quad \frac{\partial N_1}{\partial s} = -\frac{1}{4}(1-r), \quad \dots$$

Evaluate these at r = s = 0.57735, multiply by the current node coords (x_i, y_i) or reference coords (X_i, Y_i) , and sum.

- If the final numeric result is, for instance,

$$\frac{\partial(x,y)}{\partial(r,s)} = \begin{pmatrix} 1.04572 & -0.00528 \\ 0.00394 & 0.52394 \end{pmatrix}, \quad \frac{\partial(X,Y)}{\partial(r,s)} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 0.5 \end{pmatrix},$$

you then proceed to invert $\frac{\partial(X,Y)}{\partial(r,s)}$ to form **F**.

Final Steps to Get F and E:

$$\begin{bmatrix} \frac{\partial(X,Y)}{\partial(r,s)} \end{bmatrix}^{-1} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 2.0 \end{pmatrix}, \quad \mathbf{F} = \frac{\partial(x,y)}{\partial(r,s)} \begin{bmatrix} \frac{\partial(X,Y)}{\partial(r,s)} \end{bmatrix}^{-1} = \begin{pmatrix} 1.04572 & -0.01056 \\ 0.00394 & 1.04788 \end{pmatrix}.$$

Then

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}).$$

Hence you capture the element's local deformation measures in a *Total Lagrangian* framework.

5 Second Piola–Kirchhoff (2PK) Stress and Internal Force

5.1 Why the 2PK Stress?

In **finite strain** mechanics, the usual (Cauchy) stress σ is measured in the *current* (deformed) configuration. However, in a *Total Lagrangian* framework, all integrations are done over the *reference* volume V_0 . The **2nd Piola–Kirchhoff** stress **S** is the natural stress measure conjugate to the Green–Lagrange strain **E** under the reference domain:

$$\delta W_{\rm int} = \int_{V_0} \mathbf{S} \delta \mathbf{E} \, dV_0.$$

5.2 Constitutive Modeling (Elastic, Plastic)

• Linear Elastic (finite-strain sense):

$$S = C : E$$

where C is the 4th-order elasticity tensor.

• Bilinear Plastic example: once the equivalent strain $\bar{\varepsilon}$ surpasses yield, you define S(E) with a piecewise formula.

5.3 Computation of F_{int}

In the Total Lagrangian approach, the internal force at the element level is

$$\mathbf{F}_{\text{int}}^{(e)} = \int_{V_0^{(e)}} \mathbf{B}^T \mathbf{S} \, dV_0,$$

where ${\bf B}$ is derived from reference shape function derivatives. Summing over all elements yields the global ${\bf F}_{\rm int}$, used in the Newton–Raphson equations.

5.4 Relation to the Cauchy Stress

If you want to interpret the true (physical) stress in the deformed configuration, convert S to σ by

$$\boldsymbol{\sigma} = \frac{1}{\det(\mathbf{F})} \, \mathbf{F} \, \mathbf{S} \, \mathbf{F}^T.$$

Hence, **S** is mostly for the internal (reference-domain) calculations; σ is for final post-processing.

6 Putting It All Together

6.1 Full Iterative Algorithm Summary

A unified step-by-step for **Nonlinear FEA** in the *Total Lagrangian* setting:

1. Preprocessing:

- Define geometry (reference coords $\{X_i, Y_i\}$), element connectivity, shape functions $N_i(r, s)$,
- Specify material properties (E, ν) or advanced models,
- Choose boundary conditions and load increments.

2. Initialize:

- Set $\mathbf{a}^{(0)} = \mathbf{0}$,
- Decide on convergence tolerances.

3. For Each Load Step n = 1, ..., N:

- Apply or update $\mathbf{F}_{\mathrm{ext}}^{(n)}$ (the reduced portion for step n),
- Let $\mathbf{a}^{(0)} = \text{converged solution from the previous load step.}$

4. Newton-Raphson Iteration:

- (a) Compute current nodal positions $\mathbf{x}^{(i)} = \mathbf{X} + \mathbf{a}^{(i)}$,
- (b) For each element:
 - Evaluate $\frac{\partial(x,y)}{\partial(r,s)}$ and $\left[\frac{\partial(X,Y)}{\partial(r,s)}\right]^{-1}$ to get **F**,
 - Compute $\mathbf{E} = \frac{1}{2}(\mathbf{F}^T\mathbf{F} \mathbf{I}),$
 - Obtain **S** from the constitutive law,
 - \bullet Form element ${\bf B}$ and compute

$$\mathbf{F}_{\mathrm{int}}^{(e)} = \int \mathbf{B}^T \mathbf{S} \, dV_0, \quad \mathbf{K}_{\mathrm{T}}^{(e)} = \int \mathbf{B}^T \mathbf{C}_{\mathrm{tangent}} \, \mathbf{B} \, dV_0.$$

- (c) Assemble global $\mathbf{F}_{\mathrm{int}}^{(i)}$ and $\mathbf{K}_{\mathrm{T}}^{(i)},$
- (d) Evaluate $\mathbf{R}^{(i)} = \mathbf{F}_{\text{ext}}^{(n)} \mathbf{F}_{\text{int}}^{(i)}$,
- (e) Check $\|\mathbf{R}^{(i)}\| < \text{tol.If not converged}$,

$$\mathbf{K}_{\mathrm{T}}^{(i)} \Delta \mathbf{a}^{(i)} = \mathbf{R}^{(i)}, \quad \mathbf{a}^{(i+1)} = \mathbf{a}^{(i)} + \Delta \mathbf{a}^{(i)},$$

increment $i \to i+1$ and repeat.

5. Convergence:

• Once converged for load step n, proceed to $\mathbf{F}_{\mathrm{ext}}^{(n+1)}$.

6. Postprocessing:

- Evaluate final displacements, 2PK stress S, or convert to Cauchy σ ,
- Plot stress contours, deformed shape, etc.

6.2 Concluding Remarks

By merging the power of the Newton–Raphson iteration with the *Total Lagrangian* formulation, you can:

- Handle large deformations (finite strain),
- Incorporate material nonlinearities,
- Achieve robust convergence with suitable load increments and guesses.

7 Final Reflections: Why the Roadmap Matters

By following each step in this **Total Lagrangian + Newton-Raphson** roadmap, you gain insight into *precisely what* your FEA software does when you press the "solve" button. Instead of treating the solver as a black box, you now understand:

- **How the Newton-Raphson algorithm** iteratively updates displacements to reduce the global residual, - **Why each element** has its own internal force contributions, and how these assemble into a global system, - **What the "tangent stiffness"** (or Jacobian) represents, and why it's constantly updated in nonlinear problems, - **Why residuals** can be mapped back to each element or node, allowing you to visualize equilibrium imbalances.

Armed with this knowledge, you can **build better models** and **interpret solver results** more confidently. For instance, if you see that the residual stalls during iteration, you can infer that your stiffness matrix might be poorly conditioned—or that you need more careful load stepping. If you notice large element-level residuals in certain areas, you can refine the mesh or verify boundary conditions there. Ultimately, **understanding the "why" behind each solver step** helps you debug issues, explore advanced material models, and trust your simulation results.

In short, when you know what happens behind the curtain, you're empowered to **create more accurate, stable, and well-validated nonlinear FEA models**, whether in Ansys or any other solver. This deeper understanding will eventually help you become a more confident CAE engineer!

8 Note on Formulas vs. Derivations

In this guide, we have **presented** the core formulas for the tangent stiffness matrix \mathbf{K}_{T} , the internal force vector $\mathbf{F}_{\mathrm{int}}$, and the deformation measures \mathbf{F} and \mathbf{E} **without** delving into the detailed derivations that arise from:

• The principle of virtual work,

- The principle of minimum potential energy,
- Calculus of variations,
- Continuum mechanics.

Readers who wish to see **how** these integral forms originate from the fundamental equations of solid mechanics and advanced finite-element theory are encouraged to consult more specialized references or textbooks. Understanding the deeper theoretical foundations will **further strengthen** your grasp of **why** these formulas take the forms they do.

End of Document.