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1 Introduction; General Equation of Motion

Modal analysis is one of the most fundamental dynamic analyses in mechanical and structural
engineering. It is used to determine the vibration characteristics of linear elastic structures,
specifically their natural frequencies and corresponding mode shapes. These results form the
foundation for many other dynamic simulations.

In the world of engineering design and analysis, understanding how structures respond
to dynamic forces is just as critical as analyzing their behavior under static loads. Modal
analysis provides a powerful means of gaining this dynamic insight. Every physical struc-
ture—from a tiny microchip to a towering skyscraper—has certain natural frequencies at
which it tends to vibrate. When these natural frequencies are excited—by wind, machinery,
traffic, or seismic activity—the resulting amplified vibrations can lead to fatigue, performance
degradation, or even catastrophic failure.

Through modal analysis, engineers can:

• Identify critical frequencies that must be avoided during operation.

• Guide design modifications to shift natural frequencies away from external excitations.

• Optimize mass and stiffness distribution for improved dynamic performance.

• Develop more accurate dynamic models for use in further analyses such as transient
dynamics or harmonic response studies.

Even if a structure is not expected to experience significant dynamic loads during its op-
erational lifetime, modal analysis remains essential. Across industries such as aerospace,
automotive, civil, energy, electronics, and manufacturing, regulatory standards often man-
date modal testing or simulation to ensure that designs are safe against vibration-induced
failures.

For instance, the MIL-STD-810H standard, widely used in the defense sector, outlines
procedures for environmental engineering considerations and laboratory testing. Specifically,
Method 514.8 addresses vibration testing to evaluate the performance, structural integrity,
and durability of equipment when subjected to vibration during transport, handling, and
operational conditions [1].

Similarly, the IEC 60068-2-6 standard specifies procedures for sinusoidal vibration test-
ing. It defines a method for subjecting specimens to sinusoidal vibrations over a specified
frequency range to identify mechanical weaknesses or performance degradation [2].

Moreover, even if devices or structures are not subjected to dynamic loading during their
operation, they often need to be transported from the assembly site to the field. Trans-
portation can introduce a range of vibrational forces that may coincide with the natural
frequencies of the structure, leading to resonance and potential damage. Modal analysis is
crucial in these scenarios to ensure that the design can withstand such conditions.

For example, during the transportation of sensitive equipment, understanding the modal
characteristics allows engineers to design appropriate packaging and support structures that
mitigate the risk of resonance-induced failures. This proactive approach is vital to maintain
the integrity and functionality of the equipment upon arrival at its destination.
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The reader is also encouraged to consult the “PIP-II HB650 Cryomodule Transporta-
tion Design Report”, prepared by Fermi National Accelerator Laboratory. This document
discusses practical design considerations for transporting highly sensitive accelerator compo-
nents and highlights how modal analysis plays a critical role in ensuring safe delivery. One
of the report’s authors is my former graduate student, Mr. Josh Helsper. The report can be
accessed at:

https://indico.fnal.gov/event/55397/contributions/246409/attachments/157651/

206360/2020_10_26_HB650_Transportation_Design_Report_JFH_.pdf

Moreover, modal analysis helps engineers develop a deeper, dynamic understanding of
their designs. It reveals how shape, material properties, and boundary conditions influence a
system’s vibrational behavior. These insights contribute to designs that are not only strong
but also robust, efficient, and long-lasting.

Other types of dynamic analyses—such as harmonic analysis, transient dynamic analysis,
random vibration analysis, and response spectrum analysis—often rely on the results of
modal analysis as critical input. By using the natural frequencies and mode shapes computed
from modal analysis, these simulations can be significantly simplified and accelerated.

In the context of Finite Element Analysis (FEA), modal analysis allows engineers to
predict the dynamic behavior of structures virtually, early in the design phase. This reduces
the need for costly prototypes and extensive physical testing. By integrating FEA with modal
analysis, engineers can explore multiple design iterations quickly, optimize performance, and
ensure reliability before a product reaches production.

We begin with the general equation of motion and its reduction to the undamped eigen-
value form, then ground the theory with hand-worked spring–mass examples that show every
algebraic step. Next, the notes introduce pre-stress effects and geometric stiffness, explaining
how initial loads shift natural frequencies. The discussion then transitions to finite-element
practice: how mass matrices are assembled, why consistent versus lumped forms matter, and
which numerical solvers (Lanczos, sub-space iteration) are favoured for large, sparse models.

The closing pages gather key take-aways and supply worked finite-element benchmarks
so readers can test the workflows on their own.

Modal analysis is a linear dynamic analysis, based on solving the general equation of
motion, where the unknowns are the acceleration, velocity, and displacement at all points
over the structure. The general equation of motion for a dynamic system is

Mü(t) +Cu̇(t) +Ku(t) = f(t), (1.1)

where M is the mass matrix, C the damping matrix, K the stiffness matrix, u the displace-
ment vector, and f(t) the external load vector [3, 4, 5, 6, 10].

For modal analysis we impose two simplifications:

1. The external dynamic load f(t) is set to zero because natural frequencies and mode
shapes are intrinsic properties of the structure and are independent of external excita-
tion.
In classical (no-preload) modal analysis, the structure is assumed to be free from ex-
ternal static or dynamic loading during the extraction of modes.
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In pre-stressed modal analysis, while f(t) is still set to zero for modal extraction, the
presence of initial static stresses modifies the effective stiffness through a geometric
stiffness matrix, influencing the computed natural frequencies and mode shapes.

2. Damping is neglected because including it introduces complex numbers and complicates
the analysis. At this stage, we are interested in the undamped natural frequencies and
mode shapes, which provide the fundamental dynamic characteristics of the structure.

With these assumptions the equation reduces to

Mü(t) +Ku(t) = 0. (1.2)

2 Derivation of the Eigen-Value Problem

In this section, we present the derivation of the eigen-value problem for both single degree of
freedom (SDOF) and multiple degrees of freedom (MDOF) systems. We begin by formulating
the governing differential equation for an SDOF system, then generalize the concept to
MDOF systems. Finally, we explain the rationale behind assuming a harmonic form of the
solution, which simplifies the problem and leads to a well-defined mathematical structure for
extracting natural frequencies and mode shapes.

2.1 Single Degree of Freedom (SDOF) System

For a spring-mass system with mass m and stiffness k, the equation of motion is:

mü(t) + ku(t) = 0.

Assume a harmonic solution:

u(t) = A sin(ωt+ θ).

Substituting into the equation of motion:

−mω2A sin(ωt+ θ) + kA sin(ωt+ θ) = 0,

which simplifies to:
(k −mω2)A = 0.

For a non-trivial solution (A ̸= 0), the term in parentheses must vanish:

k −mω2 = 0 ⇒ ω =

√
k

m
. (2.1)

Thus, for a SDOF system, the eigenvalue problem simply reduces to finding the natural
frequency ω. This is a very important and powerful formula! It provides valuable insight
into how geometry and mass affect natural frequency. For example, a very tall skyscraper
has a large mass, which can lead to low natural frequencies. Similarly, between two beams
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with the same cross-section and material density, the longer beam will have lower natural
frequencies because it has a smaller stiffness (due to increased flexibility) and greater mass.

The unit of ω is s−1 (radians per second)

Note that this is the angular (circular) frequency. The corresponding frequency in hertz
(cycles per second) is given by:

f =
ω

2π
with units of Hz (cycles per second)

2.2 Multiple Degrees of Freedom (MDOF) System

For an n-DOF system, the equations of motion are written in matrix form:

M ü(t) +Ku(t) = 0,

where:

• M is the mass matrix,

• K is the stiffness matrix,

• u(t) is the displacement vector.

Assume a modal expansion for the displacement:

u(t) =
n∑

i=1

Φi qi(t),

where each modal coordinate qi(t) is given by:

qi(t) = Ai sin(ωit+ θi).

Substituting into the equation of motion:

M
n∑

i=1

Φi q̈i(t) +K
n∑

i=1

Φi qi(t) = 0.

Since Φi are time-independent, and differentiating qi(t) twice gives:

q̈i(t) = −ω2
iAi sin(ωit+ θi) = −ω2

i qi(t),

we substitute:

M

n∑
i=1

Φi(−ω2
i qi(t)) +K

n∑
i=1

Φiqi(t) = 0.

Grouping terms:
n∑

i=1

(K − ω2
iM)Φiqi(t) = 0.
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For nontrivial qi(t), each term must individually satisfy:

(K − ω2
iM)Φi = 0 . (2.2)

This is the generalized eigenvalue problem for each mode.
To find nontrivial solutions, we require:

det(K − ω2
iM) = 0 .

Solving this equation provides:

• Eigenvalues ω2
i (squared natural frequencies),

• Eigenvectors Φi (mode shapes).

2.3 Why Assume a Harmonic Solution?

For undamped free vibration, the system is governed by linear, second-order differential
equations with constant coefficients:

M ü(t) +Ku(t) = 0.

The general solution to such equations involves exponential functions [4, 5, 6]:

u(t) = C1e
λ1t + C2e

λ2t,

where λ1 and λ2 are roots of the characteristic equation.
For undamped systems, λ1,2 = ±iω, leading to purely imaginary roots. Thus,

eiωt = cos(ωt) + i sin(ωt),

and the real part represents harmonic motion.
Hence, the natural form of the solution is harmonic:

u(t) = A sin(ωt+ θ). (2.3)

2.4 Alternative Assumptions

Assumed Solution Physical Meaning Correct for Undamped Vibration?
A sin(ωt+ θ) Harmonic oscillation Yes

eiωt Complex form of oscillation Yes
eλt (real λ) Exponential growth/decay No

Polynomial (a+ bt+ ct2) Non-oscillatory No

Thus, assuming non-harmonic solutions (e.g., polynomials) leads to either trivial or phys-
ically incorrect results.
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2.5 Spatial vs. Temporal Phase: Mode Shape and Phase Angle

In practice, it is easy to blur the distinction between a mode shape—which governs the spatial
pattern of vibration—and the phase angle that shifts that pattern in time. Some references
even seem to treat the two notions interchangeably, which can cloud a clear physical inter-
pretation of modal results.

Because this mix-up can hinder a correct physical interpretation of modal results, the
next subsection disentangles these two notions and illustrates the difference with concrete
cantilever-beam examples.

The complete displacement field of a single real (undamped) mode is

u(x, t) = Aϕ(x) sin
(
ωt+ θ

)
, (2.4)

where

• ϕ(x) is the mode shape—a purely spatial function fixed by the eigen-value problem
(K − ω2M)ϕ = 0;

• θ is one global phase angle that shifts the motion in time and is determined only by
initial conditions;

• A sets the overall amplitude.

In-phase and out-of-phase motion inside one real mode. For any two degrees of
freedom j and k

uj(t)

uk(t)
=

ϕj

ϕk

. (2.5)

Hence

• If ϕj and ϕk have the same sign, their time histories are identical up to a scale factor
⇒ 0◦ phase difference (in-phase).

• If the signs are opposite, one trace is − sin(. . .) = sin(. . . + π) ⇒ 180◦ phase difference
(out-of-phase).

The decision is encoded entirely in the sign pattern of the mode shape; the global θ never
alters these internal relations.

Examples—cantilever beam.

1. First bending mode. ϕ1(x)>0 along the span; every point reaches peaks and zero-
crossings simultaneously. The whole beam vibrates in-phase, regardless of the chosen
θ.

2. Second bending mode. ϕ2(x) changes sign at one interior node. Points on the
root–node side (ϕ2 > 0) are 180◦ out-of-phase with points on the node–tip side (ϕ2 < 0).
The node itself (ϕ2 = 0) remains stationary. Again, θ only slides the entire movie left
or right in time.
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Figure 1: (a) 1st and (b) 2nd bending modes for a cantilevered beam

What the phase angle θ can and cannot do.

• Can: act as a common clock offset t0 = θ/ω for the entire mode; it is fixed by the
initial displacement/velocity projections onto that mode.

• Cannot: create additional point-to-point phase lags inside the same real mode.

Take-away: Mode shape chooses the choreography (who moves with whom and
who opposes whom); the global phase angle chooses the curtain-up time.

3 Worked Lumped-Mass Examples-FEA Approach

To bridge the gap between theory and practical application, this section presents worked
examples using a lumped-parameter modeling approach within the finite element analysis
(FEA) framework. These examples demonstrate how mass and stiffness matrices can be
constructed manually for discrete mechanical systems and how the resulting eigen-value
problem can be solved to determine natural frequencies and mode shapes. By working
through these examples step-by-step, students can gain a deeper understanding of how FEA
concepts apply to real-world dynamic systems, especially when dealing with simplified models
where the structure is represented by discrete masses and springs.

3.1 Example 1: Single-Mass (2 DOFs)

Physical Model:
A single spring and mass system:

• Node 0: Fixed (Ground)

• Node 1: Mass m = 2kg

• Spring k = 18N/m between Node 0 and Node 1

Element Stiffness Matrix:

Ke = k

[
1 −1
−1 1

]
9
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Figure 2: one-mass system

Global Stiffness Matrix (before BCs):

K =

[
18 −18
−18 18

]
Global Mass Matrix:

M =

[
0 0
0 2

]
(Only Node 1 has mass; Node 0 is fixed.)

Boundary Conditions:

• Node 0 fixed → eliminate first row and column.

Reduced Matrices:
Kred = [18], Mred = [2]

Eigenvalue Problem:
(Kred − ω2Mred)Φ = 0

18− 2ω2 = 0 ⇒ ω2 = 9 ⇒ ω = 3 rad/s

Mode Shape:
Φ = [1]

3.2 Example 2: Two-Mass (4 DOFs)

Physical Model:
Two masses connected by springs:

• Node 0: Fixed (Ground)

• Node 1: Mass m1 = 2kg

• Node 2: Mass m2 = 1kg

• Node 3: Fixed (Ground)

• Springs:

– k1 = 30N/m between Node 0 and Node 1

– k2 = 20N/m between Node 1 and Node 2

10
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Figure 3: Two-mass system

– k3 = 10N/m between Node 2 and Node 3

Element Stiffness Matrix for each spring:

Ke = ke

[
1 −1
−1 1

]
Global Stiffness Matrix (before BCs):

K =


30 −30 0 0
−30 50 −20 0
0 −20 30 −10
0 0 −10 10


Global Mass Matrix:

M =


0 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


Boundary Conditions:

• Nodes 0 and 3 are fixed → eliminate rows and columns 0 and 3.

Reduced Matrices:

Kred =

[
50 −20
−20 30

]
, Mred =

[
2 0
0 1

]
Eigenvalue Problem:

(Kred − ω2Mred)Φ = 0

Expanding:

det

[
50− 2ω2 −20
−20 30− ω2

]
= 0

Solving:
2ω4 − 110ω2 + 1100 = 0

note that this is called the ”characteristic equation” for the system.

ω1 = 3.626 rad/s, ω2 = 6.472 rad/s

11
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Mode Shapes (relative):

Φ(1) ≈
[
0.843
1

]
, Φ(2) ≈

[
−0.593

1

]
To make sure, you understand how mode shapes are calculated, please see below the

detailed calculation of the 2nd mode shape.

To compute the second mode shape, we solve the eigenvalue problem:

(K− ω2M)ϕ = 0

Using the previously computed second eigenvalue ω2
2 ≈ 41.86, we construct the matrix:

K−ω2
2M =

[
50 −20
−20 30

]
−
[
2 0
0 1

]
(41.86) =

[
50− 2(41.86) −20

−20 30− 41.86

]
=

[
−33.72 −20
−20 −11.86

]
We now solve: [

−33.72 −20
−20 −11.86

] [
ϕ1

ϕ2

]
=

[
0
0

]
From the first row:

−33.72ϕ1 − 20ϕ2 = 0 ⇒ ϕ1

ϕ2

= − 20

33.72
≈ −0.593

Thus, a valid (unnormalized) mode shape for the second mode is:

ϕ2 =

[
−0.593

1

]
This indicates that the two masses move in opposite directions (out of phase), with mass

1 moving at a smaller amplitude than mass 2.

Note that mode shapes show the relative deformation (configuration) of a structure at
the associated natural frequency, not the absolute values of the deformation.

Furthermore, the total number of mode shapes in a system equals the number of free
(unconstrained) degrees of freedom (DOFs). For instance, if a discretized model of a flying
drone has one million unconstrained DOFs (also called free-free), there will be one million
corresponding mode shapes. The first six modes will have natural frequencies equal to zero,
representing the entire system’s rigid body motions: three translations and three rotations.

In general, for every free or disconnected component in a finite element (FE) model that
is not constrained or properly connected to the rest of the structure, there will be zero (or
near-zero) natural frequencies. These zero-frequency modes serve as a useful diagnostic tool:
if the number of rigid body modes is greater than expected, it may indicate that parts of
the model are unintentionally floating or disconnected. Thus, checking for zero-frequency
modes can help verify whether the FE model has been correctly defined and assembled.
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3.3 How is u(t) calculated at any time?

A good question that might be in your mind is that, knowing natural frequencies and mode
shapes, how do we find the positions/displacements at any time?

Assumed modal coordinates

q1(t) = 2 sin(3.626 t), q2(t) = 0.5 sin(6.472 t)

Mode-shape matrix

Φ =

[
0.843 −0.593
1 1

]
=

[
ϕ(1) ϕ(2)

]
Total displacement vector

u(t) = Φ

[
q1(t)

q2(t)

]
=⇒

{
u1(t) = 0.843 q1(t)− 0.593 q2(t)

u2(t) = q1(t) + q2(t)

Evaluation at t = 1 s

q1(1) = 2 sin(3.626) = 2(−0.465) ≈ −0.931,

q2(1) = 0.5 sin(6.472) = 0.5(0.188) ≈ 0.0938.

u1(1) = 0.843(−0.931)− 0.593(0.0938) = −0.785− 0.0554 ≈ −0.841 m ,

u2(1) = −0.931 + 0.0938 ≈ −0.838 m .

Final displacements at t = 1 s

u1(1) = −0.841 m, u2(1) = −0.838 m.

4 Pre-Stress Modal Analysis

In many practical applications, structures operate under significant static loads before expe-
riencing dynamic excitations. Examples include bridges under dead weight, aircraft wings
under aerodynamic lift, and rotating components under centrifugal forces. These initial
static loads introduce stress distributions throughout the structure, which in turn alter its
dynamic behavior.

When a structure carries an initial (pre-)stress, the usual linear vibration problem is
modified by an extra stiffness term. This geometric stiffness (also called initial-stress or
stress-stiffening matrix, Kg) arises from linearizing the equilibrium about a pre-stressed
state. In finite-element form, one finds the total linearized stiffness as the sum of the material
(elastic) stiffness Ke and the geometric stiffness Kg [7, 8, 9].
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For a general continuum element, Ke and Kg can be written as energy integrals:

Ke =

∫
Ω

BTDB dΩ, Kg =

∫
Ω

BT
σ σ0Bσ dΩ, (4.1)

where B is the strain-displacement matrix (relating nodal displacements to strains) and Bσ

arises from derivatives of the shape functions in the current configuration. Here σ0 is the
initial (Cauchy) stress tensor in the element from the pre-loading.

The geometric stiffness depends on the initial stress distribution but not on the elastic
modulus (except through the stress). It can stiffen or soften the structure.

4.1 Physical Interpretation and Impact on Modes

Physically, geometric stiffness reflects how an initial tension or compression affects small
vibrations. A common analogy is a taut string or beam: tension makes it stiffer to transverse
deflection, while compression makes it more flexible (tending toward buckling). In modal
terms:

• Tensile pre-stress (σ0 > 0) increases the natural frequencies.

• Compressive pre-stress (σ0 < 0) decreases the natural frequencies.

These effects enter the eigenproblem through Kg. The total stiffness matrix becomes
Ke+Kg. If Kg has negative contributions (as with compression), it can reduce the positive-
definiteness of Ke. As compressive loading approaches the buckling limit, some eigenvalues
ω2 approach zero.

Thus, pre-stressed structures satisfy:

(Ke +Kg)ϕ = ω2M ϕ, (4.2)

where M is the mass matrix. Tensile Kg shifts ω upward; compressive Kg shifts ω downward.
Because Kg can be negative-definite under compression, there is a limit beyond which the
pre-stressed configuration becomes unstable. In modal terms, when the smallest eigenvalue
ω2 of Ke + Kg reaches zero, the structure has reached a buckling load. At that point
det(Ke + Kg) = 0 and nontrivial equilibrium modes appear. Isn’t it beautiful?! Modal
analysis provides a great tool for understanding buckling.

4.2 Example: Axially Loaded Euler–Bernoulli Beam

Consider an Euler–Bernoulli beam of length L, flexural rigidity EI, and mass per unit
length ρA, under axial load P (positive in compression). The transverse displacement w(x, t)
satisfies:

EI
∂4w

∂x4
− P

∂2w

∂x2
+ ρA

∂2w

∂t2
= 0.

Assuming w(x, t) = Φ(x)eiωt leads to:

EI Φ′′′′(x)− P Φ′′(x)− ρAω2Φ(x) = 0.
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For pinned-pinned conditions and using trial shapes Φn(x) = sin
(
nπ
L
x
)
, the eigenvalues

are:

ω2
n =

1

ρA

[
EI

(nπ
L

)4

− P
(nπ
L

)2
]
.

In particular, for n = 1:

ω2
1 =

EIπ4

ρAL4
− Pπ2

ρAL2
.

The buckling load corresponds to ω1 = 0, giving:

Pcr =
EIπ2

L2
.

It is obvious that a compressive load (positive P here) reduces ω, and tensile load increases
it.

This beam example also shows how axial force contributes to a second derivative term
(−PΦ′′) that modifies stiffness. In finite-element form, this corresponds to adding a geomet-
ric stiffness matrix Kg proportional to P .

4.3 General 2D/3D Finite-Element Formulation

In a general finite-element formulation, the geometric stiffness arises from the second varia-
tion of the internal virtual work under pre-stress:

K(e)
g =

∫
Ωe

BT
σ σ0Bσ dΩ. (4.3)

where Bσ depends on derivatives of the element shape functions (e.g., for a 2D solid with
shape functions Ni(x, y), the Bσ would involve ∂Ni/∂x, ∂Ni/∂y, etc.). In practice, the initial
(Cauchy) stress tensor σ0 is obtained from a preceding static analysis (or from prescribed

loads), and the stress–stiffening terms are integrated element–wise to form each K
(e)
g . Global

assembly of Kg then proceeds exactly as for the elastic stiffness matrix Ke.

For a planar (in–plane) element whose initial stresses are σx, σy, and σxy, the geometric
stiffness takes the Voigt–form structure

K(e)
g =

∫
Ωe

[
σx σxy

σxy σy

]
: B Ω , (4.4)

where “:” denotes double contraction with the gradient operator embedded in B. Detailed
element expressions of this type are tabulated for beams, pipes, shells, and solids in com-
mercial FEM theory manuals (e.g. ANSYS) and in the literature [7, 8, 9].
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5 Mass Matrix in Finite-Element Analysis

Throughout our earlier discussions, we have made frequent use of the mass matrix, [M ], in
setting up and solving equations of motion for structural dynamics and modal analysis. Up
to this point, however, we have treated [M ] as a given quantity without exploring how it is
actually constructed.

In structural finite element analysis, the mass matrix represents how the inertia of a
system is distributed across its degrees of freedom. It plays a role analogous to the stiffness
matrix [K], but instead of relating forces to displacements, the mass matrix relates forces to
accelerations. In the undamped dynamic equation:

[M ]{ü}+ [K]{u} = {f(t)},

the term [M ]{ü} captures the inertial forces resisting acceleration.
Just as the stiffness matrix is built based on the material stiffness and geometry of

elements, the mass matrix must be systematically assembled based on:

• The mass density of the material,

• The geometry and shape functions of the finite elements,

• The type of mass representation (consistent vs. lumped).

The consistent mass matrix for a 3D finite element is given by:

Me =

∫
V e

ρNTN dV (5.1)

where N is the shape function matrix, ρ is material density.
The consistent mass matrix for a 2D finite element is:

Me =

∫
Ae

ρ tNTN dA (5.2)

Where t is the thickness of the element.
When both the density ρ and thickness t are constant, the consistent mass matrix be-

comes:

Me = ρ t

∫
Ae

NTN dA (5.3)

5.1 Derivation of M in FEA

In dynamic finite element analysis, the governing equation of motion (from continuum me-
chanics) is:

∇ · σ + b = ρ ü, (5.4)

where:

• σ: stress tensor,
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• b: body force per unit volume,

• ρ: mass density,

• ü: acceleration vector.

Let’s see how M is derived using the principle of virtual work and our beloved u = Na
formula in FEA.

We start with the principle of virtual work applied to dynamics:

δWint + δWext = δWinertial, (5.5)

where:

δWint =

∫
V

δε : σ dV,

δWext =

∫
V

δu · b dV,

δWinertial =

∫
V

δu · ρ ü dV.

We’re interested in δWinertial, as it leads to the mass matrix.
Displacement and acceleration are approximated using shape functions:

u(x, t) = N (x)d(t),

ü(x, t) = N (x) d̈(t),

where:

• N (x): matrix of shape functions,

• d(t): nodal displacement vector,

• d̈(t): nodal acceleration vector.

The virtual displacement is similarly:

δu(x) = N (x) δd. (5.6)

Substituting into δWinertial:

δWinertial =

∫
V

(N δd)T · ρN d̈ dV

= δdT

(∫
V

ρNTN dV

)
d̈.

Thus, the element mass matrix is:

M e =

∫
V

ρNTN dV (5.7)
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If ρ is constant:

M e = ρ

∫
V

NTN dV (5.8)

For 2D problems with constant thickness t:

M e = ρ t

∫
A

NTN dA (5.9)

5.2 Mass Matrix Construction: Consistent vs. Lumped

There are two primary approaches for constructing the mass matrix:

• Consistent Mass Matrix:

• Lumped Mass Matrix: Simplifies the mass distribution by concentrating mass di-
rectly at the nodes, often approximated to diagonal form. This reduces computational
complexity at the expense of some accuracy, particularly for higher vibration modes.

5.2.1 Consistent Mass Matrix

This matrix is derived by integrating the shape functions used for interpolation of displace-
ment across the element volume. This method preserves the coupling between nodes and
ensures that the mass distribution follows the same interpolation as displacements. Why is
it called ”consistent”? because this mass matrix is derived from a set of shape functions that
are consistent with the stiffness matrix derivation!

Due to the use of shape functions, this type of the mass matrix contains off-diagonal
terms representing inertia coupling between nodes.

For a bilinear quadrilateral element (Q4), using 2×2 Gauss quadrature, the consistent
mass matrix has the form:

Me = ρt
1

36



4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4


5.2.2 Lumped Mass Matrix

This type of mass matrix Simplifies the mass distribution by concentrating mass di- rectly
at the nodes, often approximated to diagonal form. This reduces computational complexity
at the expense of some accuracy, particularly for higher vibration modes.

The total element mass:
mtotal = ρ× t× Area.
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For the same Q4 element, each DOF gets the same mass:

mdof =
1

8
mtotal.

Thus:
Me = diag(mdof,mdof, . . . ,mdof) (8× 8 diagonal matrix).

5.2.3 Physical Meaning of Off-Diagonal Terms

• Diagonal terms represent self-inertia: force needed to accelerate each DOF individu-
ally.

• Off-diagonal terms represent coupled inertia between nodes: movement at one node
slightly ”pulls” neighboring nodes.

• These arise because shape functions are continuous and overlapping.

Thus, the consistent mass matrix reflects a more physically accurate distribution of mass
in the element.

5.2.4 Where Lumped Mass is Preferred Over Consistent Mass: A Comprehen-
sive Discussion

In finite element modeling of dynamic problems, engineers must often choose between two
representations of mass.

While consistent mass provides theoretical rigor and improved accuracy for many cases,
lumped mass modeling is preferred in specific applications where computational efficiency,
stability, or the nature of loading demands it. A comprehensive understanding of when
lumped mass is advantageous is critical for making informed decisions in simulation projects.

1. Large-Scale Models with Millions of Degrees of Freedom
In very large models, such as full aircraft, launch vehicles, bridges, offshore structures, or
large assemblies:

• The size of the mass matrix can become computationally prohibitive.

• Solvers (especially explicit solvers) benefit significantly from the diagonal form of lumped
mass matrices.

• Matrix operations (multiplications, inversions) are far faster with diagonal mass matri-
ces.

• In many cases, especially at low frequencies, the slight loss of accuracy introduced by
lumping is acceptable compared to the overwhelming computational cost savings.

2. High-G Shock and Impact Simulations
In problems involving:

• Automotive crash simulations,
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• Ballistic impacts,

• Spacecraft landings,

• Explosive blast loading,

• Drop tests,

the physics is dominated by large inertial forces and very short time scales. In these cases:

• The global inertial response is governed by local force balances.

• Fine-scale inertial coupling effects (captured by consistent mass) are less critical.

• Lumped mass modeling ensures numerical stability and faster solutions in explicit dy-
namics.

• Commercial explicit solvers (e.g., LS-DYNA, AUTODYN) default to lumped mass for
efficiency.

3. Explicit Dynamic Analysis
Explicit time integration schemes (like central difference methods) strongly prefer lumped
mass matrices because:

• They remove the need to solve simultaneous equations at each time step.

• They allow fully explicit update formulas, greatly speeding up computations.

• Time step stability criteria are easier to manage with lumped mass.

Thus, in any explicit dynamic simulation, lumped mass modeling is usually the standard
unless specific accuracy concerns dictate otherwise.

4. Highly Localized Deformation or Fracture Problems
When modeling problems where deformation or failure is highly localized (e.g., crack prop-
agation, fragmentation, penetration problems):

• The global dynamic wave effects are less important.

• Local response and damage evolution are critical.

• Lumped mass simplifies the solution and allows finer local meshing without huge in-
creases in computational cost.

5. When Mesh Distortion Becomes Severe
In simulations involving large deformations (metal forming, soft material impact), elements
can become highly distorted. In such cases:

• Consistent mass matrices can introduce instability due to numerical inaccuracies.

• Lumped mass can improve stability because the mass distribution remains simple and
robust even as geometry changes.
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5.2.5 Important Cautions

Although lumped mass is preferred in the above cases, engineers should be cautious:

• Lumped mass can slightly overestimate stiffness in some dynamic problems.

• In pure modal analysis (especially for flexible structures), lumped mass can misrepresent
natural frequencies, particularly for bending modes.

• For vibration sensitivity studies or when detailed mode shapes are critical (e.g., satellite
flexible appendages), consistent mass remains necessary.

So, choosing between lumped and consistent mass is not only a technical decision but
also an engineering judgment. The best choice balances computational efficiency with the
fidelity required for the specific problem at hand.

6 Mode Participation Factor and Effective Mass

Large finite-element (FE) models can exhibit thousands of modes. Not every mode responds
equally to a given dynamic load: some modes are easily excited, others contribute negligibly.
Two scalars help decide which and how many modes to keep:

1. the mode-participation factor (MPF) Γi,

2. the effective mass Meff,i.

LetM be the global mass matrix, ϕi a mass-normalised mode shape1, and d a unit vector
defining the excitation direction (e.g. global +X, +Y , +Z, or a rotational axis). Then

Γi = ϕT
i Md, Meff,i = Γ2

i (6.1)

Γi is the signed amplitude with which mode i couples to the load direction d; its square
equals the mass that effectively moves in that mode.

When the cumulative effective mass in each (translational and rotational) direction
reaches ≈ 90–95 % of the total mass, the extracted mode set is considered sufficient.

M eff
cum(N) =

N∑
i=1

Meff,i, target:
M eff

cum

Mtot

≳ 0.90.

6.1 Participation factor (Γ) – what it “feels like” in real life

1. The dancer – in – the crowd picture Think of each mode shape as a dancer with
a unique signature move. A DJ starts a very specific beat: “translate the floor straight
upward” (or “rock the stage about Y ”).

• Γ = 0 – the dancer does not sense that beat at all; they stay still.

1ϕT
i Mϕi = 1 and ϕT

i Mϕj = 0 for i ̸= j.
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• Small |Γ| (≈ 0.3) – the dancer sways a little, but the move is hardly noticeable.

• |Γ| ≈ 1 – the dancer moves perfectly in step with the floor; no amplification, no can-
cellation.

• |Γ| approaching
√
Mtotal (the mathematical ceiling) – every gesture aligns with the floor

motion, so the dancer’s movement appears larger than everyone else’s.

The sign of Γ is like “facing the DJ or turning their back”: flipping direction changes the
sign, but the energy remains the same.

2. The bus-bounce analogy Picture a bus that suddenly lurches upward (a burst of
base acceleration).

Fmodal = ΓMtotal abase,

so Γ acts as a lever-arm that converts base acceleration into a modal shove.

• Large |Γ| – that mode’s “passengers” get flung hard.

• Small |Γ| – they feel only a nudge.

• Γ = 0 – they feel nothing from that lurch.

Because the mode shapes are mass-normalised (ϕTMϕ = 1), the Cauchy–Schwarz in-
equality guarantees |Γ| ≤

√
Mtotal, so no single dancer can collect more push than the whole

crowd can supply.
Squaring the participation factor gives the effective mass – the head-count of passengers

who actually “went airborne” in that mode:

Meff =
Γ2

Mtotal

.

Add the head-counts for all modes and you recover the full passenger list (the real total
mass). Thus, Γ tells you how strongly a mode picks up the motion, while Meff tells you how
much of the structure moves because of that strength.

One-sentence takeaway The participation factor is the alignment knob: it measures
how firmly a particular vibration shape latches onto a specific base motion, with its magnitude
capped by

√
Mtotal; the larger the magnitude, the more that mode “dances” when the support

starts the music.

6.2 Mass Normalization of Modes

What is a mass-normalized mode? When solving the generalized eigenvalue problem

K ϕi = ω2
i M ϕi,

the computed eigenvectors ϕ̃i are only determined up to an arbitrary scale factor. To make
modal calculations consistent, we apply mass normalization, which forces the condition

ϕT
i Mϕi = 1.
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Given an unnormalized mode ϕ̃i:
1. Compute its mass norm:

mass norm =

√
ϕ̃T

i Mϕ̃i.

2. Normalize the mode shape:

ϕi =
ϕ̃i√

ϕ̃T
i Mϕ̃i

.

Let’s dig deeper on mass normalization.Starting from the full dynamic equation

Mü+Ku = F (t),

expand the displacement in modal coordinates:

u(t) =
∑
i

ϕi qi(t).

Substituting into the equation of motion:

M
∑
i

ϕiq̈i +K
∑
i

ϕiqi = F (t),

and pre-multiplying by ϕT
j gives:

ϕT
j M

∑
i

ϕiq̈i + ϕT
j K

∑
i

ϕiqi = ϕT
j F (t).

Using the eigenvalue relation Kϕi = ω2
iMϕi and modal orthogonality:

ϕT
j Mϕj q̈j + ω2

jϕ
T
j Mϕjqj = ϕT

j F (t).

Thus, unless ϕT
j Mϕj = 1, the modal equations have complicated mass factors.

By enforcing
ϕT

j Mϕj = 1,

each mode behaves like a clean SDOF oscillator:

q̈j + ω2
j qj = ϕT

j F (t).

Are you happy with this explanation? You might still think that why we can’t just use
regular normalization, the one we use for vectors, called Euclidean norm. Using the standard
(Euclidean) norm:

∥ϕi∥ =
√

ϕT
i ϕi,

we treat all degrees of freedom (DOFs) equally.

However, in real structures:
• Different DOFs may correspond to different physical masses.
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• Translational and rotational DOFs may have different units and meanings.
• The true mass distribution is captured by the mass matrix M .
Thus, the correct physical measure of a mode’s contribution is

ϕT
i Mϕi,

which represents the generalized mass associated with the mode.

Mass normalization ensures that modal amplitudes correctly reflect kinetic energy and
dynamic response. Simply using the Euclidean norm would misrepresent the physics if mass
is not uniformly distributed.

6.3 Worked Example: Two-Mass Spring System (4 DOFs)

Let us return to the example solved in Sect. 3.2. The (unnormalised) eigenvectors are

ϕ̃1 ∝
[
0.843

1

]
, ϕ̃2 ∝

[
−0.593

1

]
.

Mass normalisation With the lumped-mass matrix M = diag(2, 1) we define

ϕi =
ϕ̃i√

ϕ̃⊤
i M ϕ̃i

=⇒ ϕ1 =

[
0.542

0.643

]
, ϕ2 =

[
−0.454

0.766

]
.

Base-excitation influence vector For a horizontal base motion we take d = [1 1]T ⇒
Md = [2 1]T.

Participation factors and effective masses

Γi = ϕ⊤
i Md = 2ϕi1 + ϕi2, Meff,i = Γ2

i .

Γ1 = 1.726, Meff,1 = 2.98 kg,

Γ2 = −0.142, Meff,2 = 0.020 kg.

Because Meff,1 +Meff,2 ≈ 3 kg = Mtot, the two modes account for essentially 100

• **Mode 1** carries ≈ 99% of the horizontal effective mass, so a horizontal input excites
this mode almost exclusively.

• **Mode 2** involves very little horizontal mass and is therefore weakly excited by
horizontal ground motion.

Please note that d = [1 1]T applies the same horizontal load to both masses at the same
time. Both masses are pulled to the right equally.

This situation makes sense when:
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• The entire base moves horizontally (e.g., during an earthquake),
• or a global horizontal force is applied that acts equally on all masses in the x-direction.

Uniform base motion (identical support displacement/acceleration at every support
node) is by far the most common & most severe dynamic excitation an engineer must design
for. Practical examples include:

• Earthquakes (code–mandated horizontal and vertical ground motions)

• Global acceleration of a ship deck, vehicle chassis, aircraft fuselage, . . .

• Drop tests, shock tables, MIL-STD-810 random-vibration inputs [1], etc.

Because each support moves the same amount, the spatial excitation vector is

d =
[
1 1 . . . 1

]T
,

and commercial FE packages (ANSYS, Abaqus, Nastran, . . . ) use this vector when they
tabulate participation factors and effective masses in the global X, Y, Z directions.

Anti-symmetric or differential support motions (e.g. d = [−1 1]T) do occur:

• Machinery forces acting between two masses

• One footing on soft soil while the opposite footing is anchored to bedrock

• Special test rigs that impose opposite motions at two ends

Such load patterns strongly excite anti-symmetric modes (in our example, mode 2), but
they are considered secondary cases, analysed only after the global uniform-base checks have
satisfied code requirements.

Some other alternative choices are:

• d = [1 0]T that means applying a horizontal force to mass 1 only.
• d = [0 1]T that means applying a horizontal force to mass 2 only.

It is clear that choosing d correctly is crucial to match the physical loading scenario.
The practical workflow for calculating the important modes is provided below:

1. Extract an initial set of modes (e.g. twice the estimated need).
2. Compute Γi and Meff,i in each global direction.
3. Increase the number of modes until M eff

cum/Mtot ≥ 90% for every direction of interest.
4. Retain modes with significant Meff,i for the load case; discard modes with negligible

contribution.

6.4 Constructing the Excitation Vector d

Commercial solvers automatically build six standard excitation vectors associated with
global translations (UX, UY, UZ) and rotations (ROTX, ROTY, ROTZ).
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6.4.1 Constructing d for Global Translations

For a unit base acceleration in +x, every translational DOF aligned with x receives a 1 and
every other DOF receives 0:

dUX = [1, 0, 0, 1, 0, 0, . . . ]T. (6.2)

Analogous vectors exist for UY and UZ.

6.4.2 Constructing d for a Unit Rotation

A rigid–body rotation of angle θ about some axis ω =
(
ωx, ωy, ωz

)
induces a displacement

field
u = ω × r

(
r = [x, y, z]T

)
.

Expanding the cross-product gives the component relations

ux = ωy z − ωz y,

uy = ωz x− ωx z,

uz = ωx y − ωy x.

(6.3)

Pure +Z rotation (ω = [0, 0, 1]). Setting ωx = ωy = 0, ωz = θ in (6.3) yields

ux = − θ y, uy = + θ x, uz = 0. (6.4)

For the unit case θ = 1 rad these values go directly into the translational DOF slots of dROTZ;
every rotational DOF entry remains zero because the whole body already rotates rigidly.

Pure +X rotation (ω = [1, 0, 0]). Equation (6.3) gives

ux = 0, uy = − θ z, uz = + θ y,

which populates dROTX.

Pure +Y rotation (ω = [0, 1, 0]). Likewise,

ux = + θ z, uy = 0, uz = − θ x,

fills dROTY.

Here is a practical recipe.

1. Choose the axis and origin. Commercial FE codes default to the global Cartesian origin;
shifting the origin changes every (x, y, z) pair in (6.3).

2. Compute (ux, uy, uz) with (6.3). Insert the resulting triplet into the global DOF order
for each node.

3. Leave nodal rotations at zero. Translational entries alone describe the rigid twist;
rotational DOFs would duplicate motion already captured by the translational pattern.

4. Scale for non-unit angles. A 0.01-rad rotation multiplies every entry by 0.01.
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Illustrative 4-node plate (unit ROTZ).

Node (x, y) [m] dux duy (uz, rot. DOFs)

1 (0, 0) 0 0 0
2 (1, 0) 0 1 0
3 (1, 1) −1 1 0
4 (0, 1) −1 0 0

Stacking these values in global DOF order gives the column vector

dROTZ =
[
0 0 0 1 −1 1 −1 0

]T
.

This vector is exactly what solvers such as ANSYS, Abaqus, or Nastran assemble internally
for the ROTZ participation-factor calculation.

6.4.3 Why “All-Ones” d is Usually Invalid

If rotational DOFs share the same numeric value as translational DOFs, units and physical
meaning break down. An all-ones vector is acceptable only when every DOF measures the
same quantity in the same direction (e.g. a 1-D lumped-mass chain). Otherwise, use separate
unit vectors or scale combinations appropriately (Section 6.4.4).

6.4.4 Simultaneous XYZ Translation

Engineers occasionally build a composite direction dXYZ with 1’s in all translational DOFs.
To maintain a resultant magnitude of 1, the vector should be normalised by 1/

√
3. Be

aware that most design codes and standards (such as earthquake and shaker table standards
US NRC, ASCE 7, Eurocode 8, MIL-STD-810, etc. [1, 11, 12, 13]) require individual X,
Y, Z analyses followed by combination rules such as SRSS, CQC, or ASCE 7’s 100/30
rule. These are all modal combination rules used to combine peak responses from multiple
modes in dynamic analyses (especially earthquakes or other base excitations). They help
engineers estimate the total structural response when modes respond at different frequencies
and phases.

6.4.5 What if we have rotational degrees of freedom in addition to translational
ones, like beam and shell elements?

Even when nodes possess rotational degrees of freedom, the excitation vector for a unit
rotation must retain the translational cross-product field u = ω × r. Rotations alone would
spin each node in place and fail to reproduce the rigid-body motion of the entire mass.

What happens if you keep only θ DOFs?

• Nodes rotate but do not translate; linear momentum (mv) is lost.

• Translational inertia mr2ω2 is omitted, so kinetic energy and effective mass are under-
predicted.

• Mixed meshes break—solid regions have no θ DOFs to fill.
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Complete excitation pattern for a unit ROTZ

DOF type Entry in d Units

Translations ux = −y, uy = +x, uz = 0 m
Rotations θz = 1 (all nodes), θx = θy = 0 rad

Mental picture—hub and rim. Imagine a thin steel ring bolted to a massive hub:

• Rotations only: every bolt hole spins 1 rad in place, but the rim nodes stay where they
are—no circular path, no linear velocity, negligible kinetic energy.

• Rotations and translations: each rim node also receives ux = −y, uy = +x, so it
sweeps the full arc r θ; kinetic energy now matches reality (Iω2 +mr2ω2).

Key takeaway. For ROTX, ROTY, or ROTZ the solver always fills both the translational
cross-product terms and the unit rotational terms (where available). That combined vector
guarantees consistent rigid-body motion across solids, shells, and beams, and yields correct
participation factors and effective modal masses.

6.4.6 Best-Practice Checklist

• Retain modes until ≥90% cumulative effective mass per direction.

• Evaluate UX, UY, UZ separately; combine responses via SRSS, CQC, or code-mandated
rules.

• Document model origin for rotations; shifting origin alters ROTX/Y/Z vectors.

• Avoid “all-ones” d unless every DOF is identical in nature and direction.

• Validate any custom excitation vector and note its physical meaning.

6.5 Summary and Key Take-aways

Participation factors translate mathematical mode shapes into practical engineering insight:
they reveal which modes a given load can actually excite. By pairing a physically meaningful
excitation vector with mass-normalised modes, engineers can safely truncate a modal basis,
target damping modifications, and satisfy code-required effective-mass thresholds without
superfluous computation.

7 Solution Algorithms for Eigenvalue Problems in FEA

When performing modal or buckling analysis in finite element software, one frequently en-
counters large-scale eigenvalue problems. These arise after assembling the global stiffness
and mass matrices and are fundamental to determining natural frequencies, buckling loads,
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and mode shapes. The typical form of the eigenvalue problem in FEA depends on the physics
being modeled. In the case of pre-stressed modal analysis, the governing equation is:

(Ke +Kg)ϕ = ω2Mϕ,

which can also be rearranged as:

(Ke +Kg − ω2M)ϕ = 0.

This is a generalized eigenvalue problem of the standard form:

Aϕ = λBϕ, (7.1)

where A = Ke +Kg, B = M , and the eigenvalue λ = ω2.

Methods Used to Solve the Eigenvalue Problem
Because these problems often involve very large and sparse matrices, commercial FEA

software packages rely on efficient iterative solution techniques. Common algorithms include:

• Subspace Iteration: Projects the global problem into a small subspace that captures
dominant modes. It is straightforward and robust but can be slower for large models.

• Lanczos Method: A Krylov subspace-based method widely used for modal extraction.
It efficiently computes a few lowest eigenvalues and associated vectors, making it the
dominant approach in modern solvers.

• Shift-and-Invert: Targets eigenvalues close to a specific value (the “shift”) and is
particularly useful when modes near a known frequency range are of interest.

For those interested in a deeper understanding of these numerical techniques, K-J. Bathe
provides a comprehensive discussion in Chapter 11 of his book Finite Element Procedures.
It is an excellent reference for exploring the theoretical background and practical implemen-
tations of eigenvalue solution strategies in FEA.

8 Examples

In this section, we bring together all the concepts and formulations developed throughout the
document to solve two representative examples in finite element modal analysis. These ex-
amples serve as a bridge between theory and application, illustrating how stiffness and mass
matrices, eigenvalue problems, and mode shapes are used to extract meaningful dynamic
characteristics of structures. Particular attention is given to the computation and interpre-
tation of participation factors and effective masses, which are crucial for understanding how
different modes contribute to the dynamic response of a system.
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8.1 Single 2-D Bilinear Quadrilateral Element (8 DOF)

1. Geometry, Material, and DOF Layout

• Element type: Q4 (bilinear quadrilateral) in plane stress.

• Nodal coordinates (m): (0, 0), (1, 0), (1, 1), (0, 1) (unit square).

• Thickness t = 0.01m.

• Material: E = 210GPa, Poisson ν = 0.30.

• Density ρ = 7800 kg/m3.

• DOF order per node: (ui, vi), giving global vector [u1, v1, u2, v2, u3, v3, u4, v4]
T (8

DOF).

2. Element Stiffness Ke (Numerical Values)
Using 2 × 2 Gauss integration, the 8× 8 stiffness matrix for the chosen material and
thickness is (units N/m):

Ke =



2.31×108 6.85×107 −1.38×108 −3.42×107 −9.23×107 −3.42×107 1.00×108 6.85×107

6.85×107 2.31×108 6.85×107 1.00×108 −3.42×107 −9.23×107 −3.42×107 −1.38×108

−1.38×108 6.85×107 2.31×108 6.85×107 1.00×108 −3.42×107 −9.23×107 −3.42×107

−3.42×107 1.00×108 6.85×107 2.31×108 6.85×107 1.00×108 −3.42×107 −9.23×107

−9.23×107 −3.42×107 1.00×108 6.85×107 2.31×108 6.85×107 −1.38×108 −3.42×107

−3.42×107 −9.23×107 −3.42×107 1.00×108 6.85×107 2.31×108 6.85×107 1.00×108

1.00×108 −3.42×107 −9.23×107 −3.42×107 −1.38×108 6.85×107 2.31×108 6.85×107

6.85×107 −1.38×108 −3.42×107 −9.23×107 −3.42×107 1.00×108 6.85×107 2.31×108


3. Consistent Mass Me (Numerical Values)

Using 2 × 2 Gauss points, the consistent mass matrix is (kg):

Me = 6.24



4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4


/36

4. Boundary Conditions
A single element in the plane has 3 rigid-body modes (two translations and one in-plane
rotation). To remove these, fix node 1 (u1=v1=0) and fix vertical translation of
node 2 (v2=0). The remaining active DOFs are

{u2, u3, v3, u4, v4} (5 DOFs).

Delete corresponding rows/columns from Ke,Me to obtain Kred,Mred (5× 5).
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5. Eigenproblem and Results
Solve

(Kred − ω2Mred)ϕ = 0.

Using any small numerical eigensolver (e.g. Python numpy.linalg.eig) yields

ω (rad/s) ≈
[
116.4, 267.1, 404.5, 640.2, 826.9

]
.

Two sample mass-normalized eigenvectors are

ϕ(1)=
[
0, 0.53, −0.62, −0.46, −0.32

]T
, ϕ(2)=

[
0, 0.64, 0.03, −0.42, 0.64

]T
.

Mode-1 shows primarily horizontal stretching of nodes 2–4; Mode-2 resembles a bend-
ing pattern.

a single 2-D element can yield non-zero natural frequencies once rigid-body DOFs are
fixed. Multiple elements simply provide smoother mode shapes and capture higher-order
deformation. For teaching, one element is sufficient to illustrate the FEA eigen-solution
workflow.

6. Participation Factors and Effective Masses
Using the mass-normalized eigenvectors and the excitation vector d = [1 1 0 1 0]T , the
participation factors and effective masses are:

Mode Γi (kg) Meff,i (kg)
1 0.165 0.0272
2 0.339 0.1149

The cumulative effective mass captured by the first two modes is approximately 0.1421 kg,
corresponding to only about 0.18% of the total physical mass (78 kg). Thus, many
additional modes would need to be extracted to capture a significant portion (e.g.,
> 90%) of the structure’s dynamic response.

While extracting additional modes would incrementally increase the cumulative effec-
tive mass, the extremely low effective mass observed here arises fundamentally because
the model contains only a single 2D element. With such a coarse discretization, the
structure lacks sufficient degrees of freedom to develop realistic, distributed vibration
modes. Thus, even computing all possible modes cannot capture a significant portion
of the mass. This highlights the critical importance of mesh refinement in finite ele-
ment modal analysis: a finer mesh not only allows more natural modes to emerge, but
also ensures that the computed modes collectively capture a meaningful fraction of the
structure’s total dynamic mass.

8.2 Finite-element modal analysis of a cantilever beam

1. Geometry and material
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Length L = 2000 mm
Radius r = 10 mm
Cross-sectional area A = πr2 = 3.142× 102 mm2

Second moment of area I =
πr4

4
= 7.854× 103 mm4

Young’s modulus E = 2.00× 105 MPa

Density ρ = 7.85× 10−6 t/mm3

2. Discretizations
Two quadratic Euler–Bernoulli beam elements (BEAM188) ⇒ 5 nodes at x = {0, 500, 1000, 1500, 2000}mm.
Each node carries the usual 6 DOF: {UX , UY , UZ , RX , RY , RZ}. After fixing all six
DOF at the left end the system has 4× 6 = 24 free DOF.

3. Element matrices
The 6× 6 quadratic beam stiffness and consistent-mass matrices were computed with
ℓ1 = ℓ2 = 1000 mm and assembled into K24×24, M24×24.

4. Eigen-solution
Solving

[
K − λiM

]
ϕi = 0 (using ARPACK (ARnoldi PACKage), mass-normalised

eigen-vectors ϕT
iMϕi = 1) gives for Mode 1:

f1 = 3.5339 Hz, ϕ
(1)
UZ =

[
0.0651, 0.2369, 0.4606, 0.7027

]T
5. Participation factors and effective masses

(a) Translation in Z

rZ =

[
0 0 1 0 0 0 | 0 0 1 0 0

0 | · · ·

]T
, Mtot = rTZMrZ = 4.6386 kg

Γ
(1)
Z =

ϕ(1)TMrZ√
rTZMrZ

=
1.740

√
kg√

kg
= 1.740

M
(1)
eff,Z =

(
Γ
(1)
Z

)2
= 1.7402 = 3.028 kg

(b) Base–rotation about Y

rRY =
[
0, 0,−x1, 0, 0, 0 | 0, 0,−x2, 0, 0, 0 | · · ·

]T
, I0y = rTRYMrRY = 5.4118 kg·mm2

Γ
(1)
RY =

ϕ(1)TMrRY√
I0y

=
−5.166 kg·mm√
5.4118 kg·mm2

= −0.9543

M
(1)
eff,RY =

(
Γ
(1)
RY

)2
= 0.9107 kg·mm2
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Comparison with ANSYS Workbench

2*Quantity This derivation ANSYS WB
Γ Meff Γ Meff

Mode 1, UZ +1.740 3.028 kg +1.74 3.0275 kg
Mode 1, RY −0.9543 0.9107 kg·mm2 −0.9543 0.91069 kg·mm2

The hand calculation and Workbench agree to all displayed digits, confirming both the
finite-element formulation and the interpretation of the participation-factor sign (it merely
reflects the arbitrary phase of the eigenvector).

Figure 4 lists the natural frequencies, participation factors and effective masses for the
first 10 modes. The last row of the effective mass table shows the total effective mass for
each direction. The reader is encouraged to redo the preceding calculations for other modes.

One question!! How many total natural frequencies, in addition to rigid modes, does this
model have?! The answer is 24! Do you know why?

One more question, do you know why some frequencies (and mode shapes) repeat? The
reason the round cross-section is dynamically axis-symmetric, so bending about Y and Z
axes costs the same strain energy and results in similar natural frequencies.

Figure 4: Plot generated from simulation results.

in this example, for mode one in z direction:

• Mtotal = 4.638 kg

•
∣∣∣Γ(1)

Z

∣∣∣ = 1.74

(well below
√
Mtotal = 2.15)

• M
(1)
eff,Z =

1.742

4.638
= 3.03 kg

(clearly ≤ 4.638 kg)

Everything respects the bound, and the sum of modal effective masses in Z ultimately
equals Mtotal.
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9 Conclusion

Modal analysis bridges the gap between abstract mathematics and tangible engineering in-
sight. This document has explored modal analysis from foundational principles to practical
applications, emphasizing both theoretical understanding and computational implementa-
tion. Starting with the general equation of motion, we derived the undamped eigenvalue
problem and demonstrated its solution through intuitive examples and finite element formu-
lations.

We introduced the critical roles of mass and stiffness matrices, examined the impact
of pre-stress via the geometric stiffness matrix, and distinguished between consistent and
lumped mass matrices. Practical procedures for constructing excitation vectors were de-
tailed, along with the physical meaning and significance of participation factors and effective
mass.

Through illustrative examples—from simple spring-mass systems to beam and 2D element
models—we highlighted how to verify models, interpret results, and ensure modal sufficiency
using effective mass metrics.
Across every example the same themes resurfaced:

1. Physics first. Always link algebraic operations back to real inertia, strain energy,
and boundary conditions; do not treat matrices as abstract bookkeeping.

2. Mesh matters. A coarse model may reproduce the first few frequencies yet carry
only a small fraction of the effective mass—refine until

∑
Meff/Mtot ≥ 90% in each

global direction.

3. Pre-load is not an after-thought. Include geometric stiffness whenever service
loads are a significant fraction of the elastic capacity; the shift in ω can be decisive for
fatigue life or flutter margins.

4. Let the numbers talk. Use participation factors, modal mass, and “all-ones” sanity
checks to expose modelling errors before expensive transients are launched.

5. Document assumptions. Record origin choice for rotational vectors, damping mod-
els set aside, and any mass-lumping decisions so that future analysts can reproduce
the study.

Final Takeaway: A well-executed modal analysis, grounded in physical reasoning and guided
by best practices, empowers engineers to predict, control, and optimize the dynamic perfor-
mance of structures across industries. Whether it be for fatigue life extension, resonance
avoidance, or design refinement, modal analysis remains a cornerstone of modern structural
dynamics.
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Disclaimer on AI Assistance and Reference Materials

This document has been developed and edited with the assistance of artificial intelli-
gence (AI), including OpenAI’s ChatGPT models (GPT-4o and o3). The content reflects a
collaborative effort between Dr. Iman Salehinia and AI through a comprehensive series of
technical questions and answers designed to enhance conceptual clarity, instructional depth,
and practical relevance.

In addition to AI support, this document draws upon a wide range of other resources,
including engineering textbooks, peer-reviewed articles, technical reports, design standards,
and professional codes. These references have been carefully integrated to ensure technical
rigor and alignment with current engineering practices.

While AI tools can offer valuable support in organizing and refining technical content,
they are not a substitute for expert knowledge or sound engineering judgment. All material
has been critically reviewed and curated by Dr. Salehinia to maintain accuracy and edu-
cational value. Readers are encouraged to use AI-generated content as a tool to support
understanding—complemented by trusted sources and their own critical thinking.
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